General Equilibrium Computational Exercise

In doing applied microeconomics you often have to compute equilibria of models that
don’t have closed-form solutions. The computation therefore must be done by iterative
numerical methods. That’s what you’ll do in this exercise, for the Cobb-Douglas example
in the semester’s first lecture. The iterative computation is pretty straightforward, because
there are only two goods and the demand functions have simple closed-form solutions.
Moreover, the equilibrium itself has a closed-form solution, so you can also have your
program compute the equilibrium prices directly and then check whether your iterative
program converges to the correct equilibrium prices.

Specifically, you are to use a spreadsheet program such as Excel, or a programming
language such as C+ or Pascal, to compute the path taken by prices and excess demands
in the two-person, two-good, pure exchange Cobb-Douglas example from the first
lecture, assuming that prices adjust according to the transition function in the Gale-
Nikaido proof of existence of equilibrium:

1

f(p) =
> [P+ M, (p)]

[p+M(p)]

where M, (p) = max{0, Az, (p)}for each good k.

Note that the proof did not actually include a 4, i.e., we could assume that 2 =1.
However, with 4 =1 the iterative process defined by this transition function will not
converge for the Cobb-Douglas example, as you can verify once you’ve created your
computational program. You’ll find that to achieve convergence you’ll need to use a 4
equal to about .02 or smaller. Recall, too, that the proof does not actually apply to the
Cobb-Douglas example, because demands are not defined for the price-lists (1,0) and
(0,1). For the same reason, you can’t start the iterative process off using either of these as
the initial price-lists, because the “next p” defined by f (p) won’t be well-defined.

You will of course have to use specific parameter values for the two consumers’ utility
functions and endowment bundles. With a small enough value for A, the process will
converge for just about any parameter values and any strictly positive initial prices. Of
course, when you run your program you should note whether it does converge to the
equilibrium price-list.

Choose some specific parameter values and initial price-list, and plot (by hand) the price-
line and the chosen bundles in the Edgeworth Box for several iterations of the process.
Note that if the prices aren’t sufficiently close to the equilibrium prices, the chosen
bundles may not lie within the confines of the box. This is an important point to
understand: each individual consumer simply takes the prices as given and chooses his or
her best bundle within the resulting budget set. The consumer takes no account of the
total resources available, nor of the other consumers’ preferences or choices, because the
consumer isn’t assumed to have that information.

6055—])01}6’1-&5 VUT,L) TIES -u(ny):)‘G.yl—a = x

<,

\HE BxameLg Fron THHE CIRST LglTvie 2

a b

vl e+b= |

rho t
0.1 1
0.961111 2
1.915027 3
1.973232 4
1.991382 5
1.997208 6
1.999093 7
1.999705 8
1.999904 9
1.999969 10
1.999990 1
1.999997 12
1.999999 13
2.000000 14
2.000000 15
2.000000 16

2.000000 17
2.000000 18
2.000000 19
2.000000 20
2.000000 21
2.000000 22

ail 0.875 a2 0.5 o: o
x1 40 X2 = 80 bt
y1= 80 y2 = 40 }(XJ ¥o
b1 = 0.125 b2 = 0.5
al*y1= 70 a2*y2 = 20
b1*x1 = 5 b2*x2 = 40
Num = 90
Den= 45
K1= K2 =
—>3= Eqmrho = 2 From CLoS@d—Form SoLur o
+=1 <3 |nitial prices: px = 1
py = 9
rho = 0.111111
Net x1 = 625 Net x2 = 140 Net X = 765
Nety1 = -69.4444 Net y2 = -15.5556 NetY = -85
Mx = 7.65
My = 0
px+Mx = 8.65
py+My = 9
Sum = 17.65
New px = 0.490085
New py = 0.509915
£22 ~» rho= 0.961111
Netx1= 67.83237 Net x2 = -19.1908 Net X = 48.64162
Net y1 = -65.1944 Nety2 = 18.44444 NetY = -46.75
Mx = 0.486416
My = 0
px+Mx = 0.976501
py+My = 0.509915
Sum = 1.486416
Newpx = 0.65695
Newpy= 0.34305
+=23 - rtho= 1.915027
Net x1 = 31.553 Net x2 = -29.5563 Net X = 1.996719
Net y1 = -60.4249 Nety2= 56.60109 NetY = -3.82377
Mx = 0.019967
My = 0
px+Mx = 0.676917
py+My = 0.34305
Sum = 1.019967
New px = 0.663666
New py= 0.336334

ca® »

<“— ALZERDy Lloge TP

‘P\=1/3) Pz:: '/3
=2

