General Equilibrium Computational Exercise

In doing applied microeconomics you often have to compute equilibria of models that
don’t have closed-form solutions. The computation therefore must be done by iterative
numerical methods. That’s what you’ll do in this exercise, for the Cobb-Douglas example
in the semester’s first lecture. The iterative computation is pretty straightforward, because
there are only two goods and the demand functions have simple closed-form solutions.
Moreover, the equilibrium itself has a closed-form solution, so you can also have your
program compute the equilibrium prices directly and then check whether your iterative
program converges to the correct equilibrium prices.

Specifically, you are to use a spreadsheet program such as Excel, or a programming
language such as C+ or Pascal, to compute the path taken by prices and excess demands
in the two-person, two-good, pure exchange Cobb-Douglas example from the first
lecture, assuming that prices adjust according to the transition function in the Gale-
Nikaido proof of existence of equilibrium:

1

f(p) =
> [P+ M, (p)]

[p+M(p)]

where M, (p) = max{0, Az, (p)}for each good k.

Note that the proof did not actually include a 4, i.e., we could assume that 2 =1.
However, with 4 =1 the iterative process defined by this transition function will not
converge for the Cobb-Douglas example, as you can verify once you’ve created your
computational program. You’ll find that to achieve convergence you’ll need to use a 4
equal to about .02 or smaller. Recall, too, that the proof does not actually apply to the
Cobb-Douglas example, because demands are not defined for the price-lists (1,0) and
(0,1). For the same reason, you can’t start the iterative process off using either of these as
the initial price-lists, because the “next p” defined by f (p) won’t be well-defined.

You will of course have to use specific parameter values for the two consumers’ utility
functions and endowment bundles. With a small enough value for A, the process will
converge for just about any parameter values and any strictly positive initial prices. Of
course, when you run your program you should note whether it does converge to the
equilibrium price-list.

Choose some specific parameter values and initial price-list, and plot (by hand) the price-
line and the chosen bundles in the Edgeworth Box for several iterations of the process.
Note that if the prices aren’t sufficiently close to the equilibrium prices, the chosen
bundles may not lie within the confines of the box. This is an important point to
understand: each individual consumer simply takes the prices as given and chooses his or
her best bundle within the resulting budget set. The consumer takes no account of the
total resources available, nor of the other consumers’ preferences or choices, because the
consumer isn’t assumed to have that information.
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